Alpha EEG Frontal Asymmetries during Audiovisual Perception in Cochlear Implant Users
A Study with Bilateral and Unilateral Young Users

A. G. Maglione1; A. Scorpecci2; P. Malerba3; P. Marsella4; S. Giannantonio2; A. Colosimo1; F. Babiloni4;5; G. Vecchiato6

1Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy;
2Centro Impianti Coelleari IRCCS Ospedale Pediatrico „Bambino Gesù”, Rome, Italy;
3Cochlear Italia s.r.l., Bologna, Italy;
4Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy;
5IRCCS Fondazione Santa Lucia, Rome, Italy;
6Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy

Keywords
Electroencephalography, frontal asymmetry, cochlear implant, young users

Summary
Objectives: The aim of the present study is to investigate the variations of the electroencephalographic (EEG) alpha rhythm in order to measure the appreciation of bilateral and unilateral young cochlear implant users during the observation of a musical cartoon. The cartoon has been modified for the generation of three experimental conditions: one with the original audio, another one with a distorted sound and, finally, a mute version. Methods: The EEG data have been recorded during the observation of the cartoons in the three experimental conditions. The frontal alpha EEG imbalance has been calculated as a measure of motivation and pleasantness to perceive music. Results: The EEG frontal imbalance of the alpha rhythm showed significant variations during the perception of the different cartoons. In particular, the pattern of activation of normal-hearing children is very similar to the one elicited by the bilateral implanted patients. On the other hand, results related to the unilateral subjects do not present significant variations of the imbalance index across the three cartoons. Conclusion: The presented results suggest that the unilateral patients could not appreciate the difference in the audio format as well as bilaterally implanted and normal hearing subjects. The frontal alpha EEG imbalance is a useful tool to detect the differences in the appreciation of audiovisual stimuli in cochlear implant patients.

Correspondence to:
Giovanni Vecchiato, PhD
Department of Physiology and Pharmacology
Sapienza University of Rome
Rome
Italy
E-mail: giovanni.vecchiato@uniroma1.it

Methods Inf Med 2015; 54: 500–504
http://dx.doi.org/10.3414/ME15-01-0005
received: January 7, 2015
accepted: March 27, 2015
epub ahead of print: May 13, 2015

1. Introduction

Most cochlear implant recipients report difficulties with music perception even after many years of implant use [1–3]. This seems due to the fact that the signal processing of cochlear implants provides only limited spectral and temporal information, besides producing a much narrower dynamic range than acoustic hearing [3, 4]. Limitations in the appreciation of the timbre and pitch of musical tone sequences have been reported in implanted patients when compared with normal hearing subjects [5–8]. Like adults, prelingually deaf children with cochlear implants show poorer pitch and melody discrimination skills than their normal-hearing (NH) peers [9–12]. Nonetheless, they seem to enjoy music listening and are often engaged in musical activities both in school and during their leisure time, possibly because they have no musical memory as a reference. Such an apparent inconsistency suggests that besides discrimination and identification skills, the emotional/affective element is important in the experience of music listening, being the predominant factor underlying the overall enjoyment of music by young cochlear implant users [13].

One of the main problems related to the perception of music is the assessment of the intrinsic pleasure derived from listening. The self-reported psychological scales are often inadequate to convey precise information about the cerebral processing associated with the pleasantness of the perceived music. However, in these last years, objective measures of the cerebral activity have been put in strict relation with the pleasantness of an individual perception [14].

In fact, indirect variables of emotional processing could be identified by tracking variations of the activity of specific anatomical structures linked to the emotional processing activity in humans, such as the pre- and frontal cortex (PFC and FC, respectively) [15–18]. The role of the PFC in emotion regulation is testified by the large
2. Methods

2.1 Subjects

Seven children have been recruited for the cochlear implant (UCI) group (5.07 ± 3.03 ys), four of them underwent the sequential implant (BCI). Personal and clinical data have been summarized in Table 1.

In the month before the EEG registration, all patients had their cochlear implant controlled and mapped with a mixed behavioral and objective method. In addition, they received a warble-tone free-field audiometry and a comprehensive speech perception and recognition assessment. All of them had all CI electrodes active with normal impedance levels, were using an ACE strategy; a 900 pps stimulation rate and an ADRO pre-processing algorithm. Informed consent was obtained from the parents of all subjects after explanation of the study. On the day the registration was performed, patients received a warble-tone free-field audiometry and a speech audiometry to make sure their hearing and speech recognition abilities were good.

The NH group is composed by six aged matched (7.67 ± 5.56 ys; Student’s t = 1.18, p = 0.26) young children with normal hearing. All procedures were approved by the ethics committee of the IRCCS Fondazione Santa Lucia (Rome, Italy).

2.2 Experimental Design and EEG Signal Processing

The musical cartoon was composed by a piece of 4-minute length of the Fantasia movie (Walt Disney, 1940) in which the original music of D. Paradisi was included. Three versions of this piece were proposed: the cartoon with its original audio (Normal); the original video and a distorted audio (Distort); the original video and no sound (Mute). The Distort condition was obtained by reversing the flow of the audio of the Normal stimulus: it causes a linear change of the pitch and the interval when compared with the original music. Professional software for audio manipulation was used (Audacity, 2.0.4 version). The acoustic pressure, provided for all the 4 minutes of stimulation, was identical for Normal and Distort conditions. Randomization of the stimuli was made to remove possible sequence confounding effect. In order to provide clues to the researcher about children’s attention during the observation of the cartoons, patients were interviewed at the end of each piece to assess attention and memory during the videoclip sequence.

During the EEG data acquisition, all subjects were comfortably seated on a chair, in an electrically-shielded, dimly-lit room. A 64-channel EEG system (BEPlus, ENEuro spa, Italy) at a sampling rate of 256 Hz was used to record scalp potentials by means of an electrode cap with 15 channels located according to the 10–20 international system. Since alpha activity in the frontal areas has been related to the phenomena we aim to investigate [27], we used the left (AF7, F3) and right (AF8, F4) frontal and prefrontal electrodes to compute the following analysis in the frequency domain. The EEG signals have been band pass filtered at 1–45 Hz and deparated of ocular artefacts by employing the Independent Component Analysis (ICA). The recording sessions have been segmented in one-second trials, in order to analyze the EEG activity elicited during the Normal, Distort and Mute conditions. Later, a semi-automatic procedure has been adopted to reject trials presenting muscular artifacts. Only artifact-free trials have been considered for the following analysis. As reported in the literature [28], Individual Alpha Frequency (IAF) has been calculated.
for each subject in order to define the investigated alpha band. Such band is in the following reported as $\text{IAF} + x$, where IAF is the Individual Alpha Frequency, in Hertz, and x is an integer displacement in the frequency domain which is used to define the alpha band as $(\text{IAF}-4, \text{IAF}+2)$, i.e. the frequency band between IAF-4 and IAF + 2 Hz. The estimation of the Power Spectral Density (PSD) in the alpha band has been performed according to the Welch method [29].

In order to investigate the cerebral frontal asymmetry in the alpha band, we calculated the following spectral imbalance of Approach/Withdrawal:

$$AW = PSD_R - PSD_L$$

where PSD stands for the average spectral activity calculated among right and left electrodes, respectively. According to the EEG frontal asymmetry theory [15, 27, 30], this index has been defined such that positive values are related to left (right) alpha de-synchronization (synchronization). Positive (negative) values of this index correlate with the perception of approaching (withdrawing) stimuli. The spectral imbalance has been calculated for all the recorded subjects in the three experimental conditions, as reported in the following paragraph.

The details of the experimental design and the whole signal processing performed on the recorded data set have been presented in previous works [31–34], and are not mentioned here due to space limitations.

The statistical analysis has been performed by computing a repeated-measures ANOVA, one for each population NH, BCI and UCI, with factor “MOVIE” (Normal, Distort, Mute) at $\alpha = 0.05$, for assessing variations of the frontal imbalance index among the proposed audiovisual stimuli. Duncan test has been performed to retrieve differences among pairwise comparisons.

3. Results

The ANOVAs returned significant differences related to the factor MOVIE for the NH and BCI populations. Averages and standard values are represented for each experimental condition in the following pictures. Figure 1 shows the average AW index for the NH group across the three kinds of audiovisual stimulation, i.e. Normal, Distort and Mute. Particularly, the statistical test highlighted significant differences for the factor “MOVIE” ($p < 0.01$) and for all the pairwise comparisons (Normal vs Distort, $p < 0.05$; Normal vs Mute, $p < 0.01$; Distort vs Mute, $p < 0.01$; Duncan's test). Overall, the results present a higher AW value for the Mute condition, which is followed by the Normal version of the cartoon and finally by the Distort one.

Pretty similar results can be observed for the BCI population (Figure 2). In fact, even the BCI users showed lower values of AW related to the observation of the Distorted cartoon as compared to both the Mute movie and the Normal one. However, only in the former case the difference was significant ($p < 0.01$). A different pattern of cerebral activation has been found for the UCI population: as illustrated by Figure 3, in this category the AW has no significant modulation across experimental conditions ($p > 0.05$).

Overall, the study results indicate a significant modulation of the AW index across audiovisual stimuli which is similar for the NH and BCI groups. In particular, the frontal imbalance is able to discriminate the appreciation of the proposed audiovisual stimuli returning higher cerebral values for the Normal condition when compared with the Distort one. The highest values of the AW index are related to the Mute condition.

4. Conclusions

The present study presents an objective method to estimate the appreciation of cartoons in groups of bilateral and unilateral cochlear implant recipients and normal-hearing subjects. The analysis of the alpha EEG rhythm in terms of frontal imbalance index, performed in the present study, suggests that the pattern of modulation of such cerebral variable is in agreement with the EEG frontal asymmetry theory [27]. Similar findings have also been observed in previous studies performed on NH adult subjects watching TV commercials [30, 35, 36]. In the present study, for the NH subjects and the BCI users, the lowest values of the frontal imbalance index are related to
the observation of the cartoon in its distort version which therefore can be considered as the less approaching. Not surprisingly, the observation of the normal version of the cartoon returned higher values of the imbalance index, although the highest are related to the mute stimulation. This result suggests that NH and BCI children are able to appreciate the difference between the normal and mute version of the cartoon but they seem to prefer the mute videoclip. Taking into account that the audio stimulation is related to a piece of classical music, we hypothesize the enrolled children are overall more interested and attracted by the visual stimulus instead of the combination of audio and video, maybe because the music was difficult to interpret.

Moreover, the presented results indicate a substantial difference of frontal/prefrontal cortex activation pattern between BCI and UCI users, BCI users showing a pattern which is more similar to the one observed in NH subjects. A possible interpretation of this finding is that in UCI users the perception of the music, or quality of sound, is not sufficiently contrasted, among the conditions, to elicit an asymmetrical power spectrum response in the alpha band. Possibly, the application of a second CI allows a more comprehensive stimulation of cortical areas in both hemispheres, and thus a cortical activation pattern which better corresponds to the withdrawal/approach model. Therefore, a UCI could determine a defective appreciation of music pleasantness, although such a conjecture needs to be supported by a more robust experimental sample.

Overall, the results of this study prove the usefulness of the EEG technique to address the issue of music perception and its pleasantness in cochlear implant patients. Despite the limited number of subjects enrolled in the present experiment, and the subsequently low statistical power, these results show the capability of the approach/withdrawal index to estimate the appreciation of a movie in cochlear implant children. Future developments of the research will estimate functional connectivity patterns and indices derived from the graph theory [37–39] to provide additional quantitative indices describing the investigated phenomena.

Acknowledgments

This work has been supported by the Italian Minister of Foreign Affairs “Direzione Generale per la Promozione del Sistema Paese” with grants provided for the bilateral cooperation between Italy and China “Neuropredictor”.

Figure 2 Average and standard deviation of the Approach/Withdrawal index across the different experimental conditions of the factor MOVIE (Normal, Distort and Mute) for the population of bilateral cochlear implant users (BCI). Duncan test reveals a statistical significant difference between Mute and Distort levels of MOVIE factor at the 5% significance level as illustrated by the red cross.

Figure 3 Average and standard deviation of the Approach/Withdrawal index across the different experimental conditions of the factor MOVIE (Normal, Distort and Mute) for the population of unilateral cochlear implanted users (UCI). No statistical differences.
References

