Evolving Pervasive Health Research into Clinical Practice

O. Mayora¹; P. Lukowicz²; M. Marschollek³

¹CREATE-NET, Trento, Italy; ²German Research Center for Artificial Intelligence, Kaiserslautern, Germany; ³Peter L. Reichertz Institute for Medical Informatics, University of Braunschweig – Institute of Technology and Hannover Medical School, Hannover, Germany

During the past years there has been a growing research trend on investigating the use of pervasive computing technologies for their use in the healthcare domain. The research activity on this topic known as “Pervasive Health”, has been defined as a scientific discipline integrating the technological advances on pervasive computing, the research on human-computer interaction and their application in the medical and wellbeing domains [1].

From its origin around a decade ago, Pervasive Health research has been evolving from the development of experimental proof-of-concept prototypes tested under limited pilot tests, into more robust systems able to satisfactorily perform in real-life conditions including a considerable amount of users for validation [2]. From a technology and users-acceptance point of view, previous Pervasive Health research has assessed various ways to maximize usefulness in treatment and care management and on users adoption. The question arising then is that if these technologies have proven to provide a real potential benefit, why don’t we see them yet as part of today’s mainstream healthcare provisioning practice? Which barriers still need to be overcome in order to implement Pervasive Health?

Today, Pervasive Health research has achieved a maturity level that allows encouraging current developers and researchers to perform a quality step ahead by identifying the ways to integrate the lessons learnt in this discipline into the actual paths of healthcare provisioning. The implementation of Pervasive Health into clinical practice opens a new series of challenges that imply the need of conducting more intensive multidisciplinary research involving fields that in the past were considered less relevant to this topic. The new trends of Pervasive Health incorporate the traditional joint approach between pervasive computing and interactive technologies, the need of intensifying the relationship with clinical practitioners in a more structured and rigorous way than in previous years. It is not sufficient anymore to create novel ways of applying technology to prevention and treatment confined to lab-settings, but the use of technology needs today to show a clear, measurable evidence of the advantages of Pervasive Health into actual clinical environments while contributing to medical science in a formal way.

The future of Pervasive Health developments will need to incorporate from early design phases how solutions will cope with non-functional implementation constraints [3]. The clinical validity of new technology-based treatments will be a necessary condition to enable operation in real-life medical domain including all the relevant implications of conducting clinical research. Such implications include incorporation of legal aspects, ethical considerations, regulatory issues and all necessary conditions to permit inclusion of new technologies into healthcare with the assurance to patients and clinicians of secure and high quality level of treatment. Moreover, the amount of data useful for clinical prac-
tice and available from Pervasive Health
ew applications will grow in orders of
magnitude in the next years [4]. On this re-
gard, next generation of Pervasive Health
systems will need to incorporate all the
previously mentioned variables how the ac-
tual health management process will need
to change for adapting the innovative sol-
tions into more efficient organizational
schemes in order to find their way into
real-world applications.

This focus theme presents a collection
of papers contributing to the research of
Pervasive Health and incorporating aspects
of future agenda on this topic in different
ways. The first focusing on enhancing
sensing in real-life conditions, the second
on clinician acceptance of technologies and
the third on evaluation of in-patient en-
vvironments as described below:

The first paper [5] by Marco Altini and
others (Automatic Heart Rate Normaliza-
tion for Accurate Energy Expenditure Esti-
mation: An Analysis of Activities of Daily
Living and Heart Rate Features), intro-
duces an Energy Expenditure (EE) esti-
mation algorithm using Heart Rate and
analysis of a combination of activities of
daily living (ADL). This paper provides in-
sight regarding the relationship of normal-
ized HR parameters to low intensity ADLs
as a way to reduce EE estimation errors in
real-life settings.

The second paper [6] by Hartzler and
others (Real-time feedback on nonverbal
clinical communication: Theoretical frame-
work and clinician acceptance of ambient
visual design) proposes the use of social sig-
nal processing technology (SSP) to capture
non-verbal interactions between patients
and clinicians in order to enhance the com-
munication process using visual feedback.
The results of this study introduce relevant
implications for design for visual feedback
facilitating empathic patient-centered non-
verbal communications.

The third paper [7] of this focus theme
(Adaptable Healing Patient Room for
Stroke Patients: a Staff Evaluation) was
written after a study by Daemen and others
and consists in the evaluation of an in-
patient environment supporting patients,
family, nurses and clinicians during the re-
covery process of patients. The evaluation
takes into consideration specific healing
concepts such as the Adaptive Daily
Rhythm Atmospheres, Artificial Skylight
and Adaptive Stimulus Dosage together
considering their impact towards faster re-
covery, better sleep and enhanced well-
being and their effect under specific clin-
ical workflow.

References

1. Bardram JE. Pervasive Healthcare as a Scientific
2. Arnrich B, Mayora O, Bardram J, Tröster G. Per-
 vasive Healthcare – Paving the Way for a Per-
 vasive, User-Centered and Preventive Healthcare
 A, Frost M, et al. Personal Health Systems for Bi-
 polar Disorder: Anecdotes, Challenges and Lessons
 Learnt from MONARCA Project. In: Proceeding
 of 3rd International Workshop on Pervasive
 Computing Paradigms for Mental Health; 2013.
 pp 424–429.
4. Kohlmann M, Gietzelt M, Marschollek M, Song B,
 Wolf KH, Haux R. High Intensity, Multimodality
 and Incoherence: Grand Challenges in the Analy-
 sis of Data for Health-Enabling Technologies. Stud
 Health Technol Inform 2013; 192: 967.
 Heart Rate Normalization for Accurate Energy
 Expenditure Estimation: An Analysis of Activities
 of Daily Living and Heart Rate Features Methods
6. Hartzler A, Patel RA, Czerwinski M, Pratt A,
 Chandrasekaran N, Back A. Real-time Feedback
 on Nonverbal Clinical Communication: Theoreti-
 cal Framework and Clinician Acceptance of Am-
 389–405.
7. Daemen EMI, Flinsenberg IC, Van Loenen EJ,
 Cuppen RP, Raja-Joordens RJ. Adaptable Healing
 Patient Room for Stroke Patients. A Staff Evalu-