Clinical medicine is one of the most challenging areas for education. The development of clinical competence requires the assimilation of large amounts of knowledge combined with acquisition of clinical skills and clinical problem-solving ability. Clinical skills include the technical skill in implementing a procedure as well as skill in patient consultation and physical examination. Clinical problem solving requires the ability to synthesize the information contained in a clinical case and to integrate it with the physician’s knowledge and experience in order to diagnose and manage the patient’s problem. It also requires the ability to work in teams and the ability to transfer one’s knowledge to unfamiliar situations such as rare problems, disasters and emergencies.

Currently, training toward clinical competence follows an apprenticeship approach, which consists of close expert supervision while interacting with patients. This method of training can subject patients to discomfort, risk of complications, and prolonged procedure times, creating a clinical governance dilemma. At the same time, there may be limited access to apprenticeship training in more complex scenarios with corresponding difficulty training in a time-effective manner. Intelligent clinical training systems hold the promise to address many of these issues. A facilitating technological environment has emerged in recent years through the maturation of research in intelligent tutoring systems, medical simulation, and virtual reality (VR) techniques and the development of Web 2.0 collaborative authoring and social networking tools.

The field of intelligent tutoring systems has come a long way since its start in the 1980s. There is now a well accepted standard architecture for such systems [1] and a number of well developed and tested user modeling techniques such as Bayesian networks [2]. The field has matured to the extent that Carnegie Mellon University is now using intelligent tutoring as a key technology in its ambitious Open Learning Initiative [3]. Recent work on incorporating medical ontologies into intelligent tutoring systems [4] and on leveraging existing large-scale medical ontologies like UMLS [5] hold promise to increase the domain coverage and quality of interaction and to decrease the cost of producing such systems.

Clinical training during the past decade has witnessed a significant increase in the use of simulation technology for teaching and assessment [6]. Medical simulations, in general, aim to imitate real patients, anatomic regions, or clinical tasks, and/or to mirror the real-life circumstances in which medical services are rendered. The simulator response will vary according to user actions (for example, heart rate and blood pressure will change appropriately depending on the dose of a particular drug administered intravenously [7]). Training and assessment using these simulators can focus on individual skills (e.g., ability of a resident to intubate [8]) or the effectiveness of teams [9, 10].

The use of virtual and augmented reality techniques to create realistic simulations of the physical aspects of the clinical environment is attracting increasing attention due to the promise of creating high-quality training environments, and to the rapid development and decreasing cost of software and hardware, driven in part by developments in the computer game industry. Building upon successful VR simulations in specific areas [11–13], a stream of work has emerged to build generic open-source software toolkits for medical VR

Methods Inf Med 2010; 49: 388–389

Correspondence to:
Prof. Peter Haddawy, Director
United Nations University
International Institute for Software Technology
Casa Silva Mendes Est. do Engenheiro Trigo No. 4
Macau
China
E-mail: haddawy@iist.unu.edu

simulation [14–17]. These emerging tool-
kits should help to speed the development
of high-quality VR simulations for surgical
training.

This special issue on intelligent clinical training systems contains four papers that show how these advances in technology are enabling advances in clinical training and
conversely how the challenges of the clinical
training environment are driving develop-
ment of new technology. The papers highlight issues in the design and construction of systems for training in clinical problem solving and clinical practice and the challenges in the integration of such sys-
tems into medical school curricula.

The paper by Buel and Nyssen [18] pre-
sents the MedSkills system that supports the practice of evidence-based medicine. MedSkills provides a flexible environment for authoring and making use of evidence-
based knowledge for education in medical skills for all levels of healthcare profes-
sionals. The system makes use of a wiki that allows registered users to add, adapt, and
correct content. The system organizes knowledge into cellular, organ, body, and
best treatment knowledge maps and can support multimedia content. MedSkills
currently encompasses knowledge in the areas of chest pain, respiratory problems,
shock, burns, birth, and minor surgery and is currently used as an educational tool by
several groups in Europe.

The paper by Rhiemora et al. [19] pre-
sents and evaluates a prototype virtual reality simulator for teaching dental pro-
cedures. The system includes haptic feed-
back that can simulate tooth surface ex-
ploration and cutting for tooth prepara-
tion. The work makes first steps at integrat-
ing virtual reality surgical simulation with
intelligent tutoring capabilities. It is able to
monitor and classify the performance of an
operator as novice or expert. It allows pro-
cedures to be visually and haptically rec-
corded and replayed so that procedures as
carried out by experts may be used to guide
students.

Hayes-Roth et al. [20] describe STAR
Workshop, a Web-based training system that
automates efficacious techniques for
individualized coaching and authentic
role-play practice. Several patient design
features enhance role-play authenticity by
replicating important human qualities and
functional requirements of real patients.
This study compares STAR Workshop to a
Web-based, self-guided e-book and a no-
treatment control, for training the Engage
for Change (E4C) brief intervention proto-
col to reduce alcohol use. The results sug-
gest that STAR Workshop is an accessible,
scalable, cost-effective approach to training
clinical interviewing skills.

Berner and McGowan [21] survey the
literature and discuss the issues in the use of
diagnostic decision support systems in medical education. The authors illustrate
some of the issues that will be faced as these
types of computer systems become avail-
able for use with medical students. While
students will still need grounding in the
basic knowledge and skills that have always
been necessary to become a physician,
computer-based diagnostic programs are likely to influence the training that students receive and the manner in which they practice their craft.

A number of key technologies are
coming together to enable a wave of innov-
ation in the way that clinical training is
conducted. The innovations hold the
promise not only to reduce the cost of clini-
cal training but also to increase the quality
by providing a new set of pedagogical tools
for medical faculty to use. The papers in
this special issue provide a glimpse of this
coming wave. What is needed now is strong
collaboration among medical school fac-
ulty, experts in pedagogy, computer scien-
tists, and entrepreneurs in order to bring
these developments into wide-spread use.

References

1. Murray T. Authoring intelligent tutoring systems:
an analysis of the state of the art. Int J Artif Intell

2. Conati C, et al. Using Bayesian networks to manage
uncertainty in student modeling. User Modeling

3. Open Learning Initiative, Carnegie Mellon Uni-
versity (cited 2010 March 25). Available from:
http://oli.wb.cmu.edu/openlearning/initiative

4. Crowley R, Medvedeva O. An intelligent tutoring
system for visual classification problem solving.

5. Kazi H, Haddow P, Suebnukarn S. Leveraging a
domain ontology to increase the quality of feedback
in an intelligent tutoring system. To appear in: Pro-
ceedings of the 10th International Conference on
Intelligent Tutoring Systems; 2010 June 14–18;
Pittsburgh, USA. New York: Springer.

6. Issenberg SB, et al. Features and uses of high-fide-
licity medical simulations that lead to effective learn-
ing: A BEME systematic review. Med Teach 2005;

7. Nguyen HB, et al. An educational course including
medical simulation for early goal-directed therapy
and the severe sepsis resuscitation bundle: an evalua-
tion for medical student training. Resuscitation

8. Owen H, Plummer JL. Improved learning of a clini-
cal skill: the first year's experience of teaching

9. Dev P, et al. Virtual worlds and team training. An-

10. Long RE. Using simulation to teach resuscitation:
an important patient safety tool. Crit Care Nurs

11. Farber M, Hummel E, Gerloff C, Handels H. Virtual

13. Seymour NE, et al. Virtual reality training improves
operating room performance results of a random-
ized, double-blinded study. Ann Surg 2002; 236:
458–464.

for collaborative, real-time surgical simulation.
Proceedings of the 9th Medicine Meets Virtual
Reality; 2002 Jan 23–26; Newport Beach, CA.

15. Bacon J, et al. The Surgical Simulation and Training
Markup Language (SSTML): an XML-based lan-
guage for medical simulation. Stud Health Technol
Inform 2006; 119: 37–42.

16. Carusoglu MC, Goktekin TG, Tendick F, GiPSi: A
framework for open source/open architecture soft-
ware development for organ-level surgical simul-
ation. IEEE Trans Inf Technol Biomed 2006; 10:
312–322.

medical simulation. Stud Health Technol Inform

ment for evidence-based medical skills. Methods

Daly MN. A Virtual Reality Simulator for Teaching
and Evaluating Dental Procedures. Methods Inf

20. Hayes-Roth B, Saker R, Amano K. Automating In-
formal, double-blinded study. Ann Surg 2002; 236:
593–599.